You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
6.8 KiB
181 lines
6.8 KiB
1 year ago
|
# !/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
#
|
||
|
# Copyright 2016-2099 Ailemon.net
|
||
|
#
|
||
|
# This file is part of ASRT Speech Recognition Tool.
|
||
|
#
|
||
|
# ASRT is free software: you can redistribute it and/or modify
|
||
|
# it under the terms of the GNU General Public License as published by
|
||
|
# the Free Software Foundation, either version 3 of the License, or
|
||
|
# (at your option) any later version.
|
||
|
# ASRT is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
# GNU General Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License
|
||
|
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
|
||
|
# ============================================================================
|
||
|
|
||
|
"""
|
||
|
@author: nl8590687
|
||
|
ASRT语音识别基于gRPC协议的API服务器程序
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import time
|
||
|
from concurrent import futures
|
||
|
import grpc
|
||
|
|
||
|
from assets.asrt_pb2_grpc import AsrtGrpcServiceServicer, add_AsrtGrpcServiceServicer_to_server
|
||
|
from assets.asrt_pb2 import SpeechResponse, TextResponse
|
||
|
from speech_model import ModelSpeech
|
||
|
from model_zoo.speech_model.keras_backend import SpeechModel251BN
|
||
|
from speech_features import Spectrogram
|
||
|
from language_model3 import ModelLanguage
|
||
|
from utils.ops import decode_wav_bytes
|
||
|
|
||
|
API_STATUS_CODE_OK = 200000 # OK
|
||
|
API_STATUS_CODE_OK_PART = 206000 # 部分结果OK,用于stream
|
||
|
API_STATUS_CODE_CLIENT_ERROR = 400000
|
||
|
API_STATUS_CODE_CLIENT_ERROR_FORMAT = 400001 # 请求数据格式错误
|
||
|
API_STATUS_CODE_CLIENT_ERROR_CONFIG = 400002 # 请求数据配置不支持
|
||
|
API_STATUS_CODE_SERVER_ERROR = 500000
|
||
|
API_STATUS_CODE_SERVER_ERROR_RUNNING = 500001 # 服务器运行中出错
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='ASRT gRPC Protocol API Service')
|
||
|
parser.add_argument('--listen', default='0.0.0.0', type=str, help='the network to listen')
|
||
|
parser.add_argument('--port', default='20002', type=str, help='the port to listen')
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
AUDIO_LENGTH = 1600
|
||
|
AUDIO_FEATURE_LENGTH = 200
|
||
|
CHANNELS = 1
|
||
|
# 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块
|
||
|
OUTPUT_SIZE = 1428
|
||
|
sm251bn = SpeechModel251BN(
|
||
|
input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS),
|
||
|
output_size=OUTPUT_SIZE
|
||
|
)
|
||
|
feat = Spectrogram()
|
||
|
ms = ModelSpeech(sm251bn, feat, max_label_length=64)
|
||
|
ms.load_model('save_models/' + sm251bn.get_model_name() + '.model.h5')
|
||
|
|
||
|
ml = ModelLanguage('model_language')
|
||
|
ml.load_model()
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
|
||
|
class ApiService(AsrtGrpcServiceServicer):
|
||
|
"""
|
||
|
继承AsrtGrpcServiceServicer,实现hello方法
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def Speech(self, request, context):
|
||
|
"""
|
||
|
具体实现Speech的方法, 并按照pb的返回对象构造SpeechResponse返回
|
||
|
:param request:
|
||
|
:param context:
|
||
|
:return:
|
||
|
"""
|
||
|
wav_data = request.wav_data
|
||
|
wav_samples = decode_wav_bytes(samples_data=wav_data.samples,
|
||
|
channels=wav_data.channels, byte_width=wav_data.byte_width)
|
||
|
result = ms.recognize_speech(wav_samples, wav_data.sample_rate)
|
||
|
print("语音识别声学模型结果:", result)
|
||
|
return SpeechResponse(status_code=API_STATUS_CODE_OK, status_message='',
|
||
|
result_data=result)
|
||
|
|
||
|
def Language(self, request, context):
|
||
|
"""
|
||
|
具体实现Language的方法, 并按照pb的返回对象构造TextResponse返回
|
||
|
:param request:
|
||
|
:param context:
|
||
|
:return:
|
||
|
"""
|
||
|
print('Language收到了请求:', request)
|
||
|
result = ml.pinyin_to_text(list(request.pinyins))
|
||
|
print('Language结果:', result)
|
||
|
return TextResponse(status_code=API_STATUS_CODE_OK, status_message='',
|
||
|
text_result=result)
|
||
|
|
||
|
def All(self, request, context):
|
||
|
"""
|
||
|
具体实现All的方法, 并按照pb的返回对象构造TextResponse返回
|
||
|
:param request:
|
||
|
:param context:
|
||
|
:return:
|
||
|
"""
|
||
|
wav_data = request.wav_data
|
||
|
wav_samples = decode_wav_bytes(samples_data=wav_data.samples,
|
||
|
channels=wav_data.channels, byte_width=wav_data.byte_width)
|
||
|
result_speech = ms.recognize_speech(wav_samples, wav_data.sample_rate)
|
||
|
result = ml.pinyin_to_text(result_speech)
|
||
|
print("语音识别结果:", result)
|
||
|
return TextResponse(status_code=API_STATUS_CODE_OK, status_message='',
|
||
|
text_result=result)
|
||
|
|
||
|
def Stream(self, request_iterator, context):
|
||
|
"""
|
||
|
具体实现Stream的方法, 并按照pb的返回对象构造TextResponse返回
|
||
|
:param request_iterator:
|
||
|
:param context:
|
||
|
:return:
|
||
|
"""
|
||
|
result = list()
|
||
|
tmp_result_last = list()
|
||
|
beam_size = 100
|
||
|
|
||
|
for request in request_iterator:
|
||
|
wav_data = request.wav_data
|
||
|
wav_samples = decode_wav_bytes(samples_data=wav_data.samples,
|
||
|
channels=wav_data.channels,
|
||
|
byte_width=wav_data.byte_width)
|
||
|
result_speech = ms.recognize_speech(wav_samples, wav_data.sample_rate)
|
||
|
|
||
|
for item_pinyin in result_speech:
|
||
|
tmp_result = ml.pinyin_stream_decode(tmp_result_last, item_pinyin, beam_size)
|
||
|
if len(tmp_result) == 0 and len(tmp_result_last) > 0:
|
||
|
result.append(tmp_result_last[0][0])
|
||
|
print("流式语音识别结果:", ''.join(result))
|
||
|
yield TextResponse(status_code=API_STATUS_CODE_OK, status_message='',
|
||
|
text_result=''.join(result))
|
||
|
result = list()
|
||
|
|
||
|
tmp_result = ml.pinyin_stream_decode([], item_pinyin, beam_size)
|
||
|
tmp_result_last = tmp_result
|
||
|
yield TextResponse(status_code=API_STATUS_CODE_OK_PART, status_message='',
|
||
|
text_result=''.join(tmp_result[0][0]))
|
||
|
|
||
|
if len(tmp_result_last) > 0:
|
||
|
result.append(tmp_result_last[0][0])
|
||
|
print("流式语音识别结果:", ''.join(result))
|
||
|
yield TextResponse(status_code=API_STATUS_CODE_OK, status_message='',
|
||
|
text_result=''.join(result))
|
||
|
|
||
|
|
||
|
def run(host, port):
|
||
|
"""
|
||
|
gRPC API服务启动
|
||
|
:return:
|
||
|
"""
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||
|
add_AsrtGrpcServiceServicer_to_server(ApiService(), server)
|
||
|
server.add_insecure_port(''.join([host, ':', port]))
|
||
|
server.start()
|
||
|
print("start service...")
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
run(host=args.listen, port=args.port)
|