You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

510 lines
24 KiB

1 year ago
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2016-2099 Ailemon.net
#
# This file is part of ASRT Speech Recognition Tool.
#
# ASRT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ASRT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
# ============================================================================
"""
@author: nl8590687
若干声学模型模型的定义
"""
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Dropout, Input, Reshape, BatchNormalization
from tensorflow.keras.layers import Lambda, Activation, Conv2D, MaxPooling2D
from tensorflow.keras import backend as K
import numpy as np
from utils.ops import ctc_decode_delete_tail_blank
class BaseModel:
"""
定义声学模型类型的接口基类
"""
def __init__(self):
self.input_shape = None
self.output_shape = None
self.model = None
self.model_base = None
self._model_name = None
def get_model(self) -> tuple:
return self.model, self.model_base
def get_train_model(self) -> Model:
return self.model
def get_eval_model(self) -> Model:
return self.model_base
def summary(self) -> None:
self.model.summary()
def get_model_name(self) -> str:
return self._model_name
def load_weights(self, filename: str) -> None:
self.model.load_weights(filename)
def save_weights(self, filename: str) -> None:
self.model.save_weights(filename + '.model.h5')
self.model_base.save_weights(filename + '.model.base.h5')
f = open('epoch_'+self._model_name+'.txt', 'w')
f.write(filename)
f.close()
def get_loss_function(self):
raise Exception("method not implemented")
def forward(self, x):
raise Exception("method not implemented")
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
y_pred = y_pred[:, :, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
class SpeechModel251BN(BaseModel):
"""
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
"""
def __init__(self, input_shape: tuple = (1600, 200, 1), output_size: int = 1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel251bn'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h = Conv2D(32, (3, 3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv0')(input_data) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN0')(layer_h)
layer_h = Activation('relu', name='Act0')(layer_h)
layer_h = Conv2D(32, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv1')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN1')(layer_h)
layer_h = Activation('relu', name='Act1')(layer_h)
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
layer_h = Conv2D(64, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv2')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN2')(layer_h)
layer_h = Activation('relu', name='Act2')(layer_h)
layer_h = Conv2D(64, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv3')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN3')(layer_h)
layer_h = Activation('relu', name='Act3')(layer_h)
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv4')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN4')(layer_h)
layer_h = Activation('relu', name='Act4')(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv5')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN5')(layer_h)
layer_h = Activation('relu', name='Act5')(layer_h)
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv6')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN6')(layer_h)
layer_h = Activation('relu', name='Act6')(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv7')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN7')(layer_h)
layer_h = Activation('relu', name='Act7')(layer_h)
layer_h = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h) # 池化层
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv8')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN8')(layer_h)
layer_h = Activation('relu', name='Act8')(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, padding='same', kernel_initializer='he_normal', name='Conv9')(layer_h) # 卷积层
layer_h = BatchNormalization(epsilon=0.0002, name='BN9')(layer_h)
layer_h = Activation('relu', name='Act9')(layer_h)
layer_h = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h) # 池化层
# test=Model(inputs = input_data, outputs = layer_h12)
# test.summary()
layer_h = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128), name='Reshape0')(layer_h) # Reshape层
layer_h = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal', name='Dense0')(layer_h) # 全连接层
layer_h = Dense(output_size, use_bias=True, kernel_initializer='he_normal', name='Dense1')(layer_h) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h)
model_base = Model(inputs = input_data, outputs = y_pred)
# model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size,), dtype=np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float64)
for i in range(batch_size):
x_in[i, 0:len(data_input)] = data_input
base_pred = self.model_base.predict(x=x_in)
r = K.ctc_decode(base_pred, in_len, greedy=True, beam_width=100, top_paths=1)
if tf.__version__[0:2] == '1.':
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
speech_result = ctc_decode_delete_tail_blank(r1[0])
return speech_result
class SpeechModel251(BaseModel):
"""
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
"""
def __init__(self, input_shape: tuple = (1600, 200, 1), output_size: int = 1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel251'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.05)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
layer_h3 = Dropout(0.05)(layer_h3) # 随机中断部分神经网络连接,防止过拟合
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.1)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.1)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.15)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.15)(layer_h9)
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.2)(layer_h10)
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
layer_h12 = Dropout(0.2)(layer_h12)
layer_h13 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h12) # 卷积层
layer_h13 = Dropout(0.2)(layer_h13)
layer_h14 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h13) # 卷积层
layer_h15 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h14) # 池化层
# test=Model(inputs = input_data, outputs = layer_h12)
# test.summary()
layer_h16 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h15) # Reshape层
layer_h16 = Dropout(0.3)(layer_h16) # 随机中断部分神经网络连接,防止过拟合
layer_h17 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h16) # 全连接层
layer_h17 = Dropout(0.3)(layer_h17)
layer_h18 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h17) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h18)
model_base = Model(inputs=input_data, outputs=y_pred)
# model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size,), dtype=np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float64)
for i in range(batch_size):
x_in[i, 0:len(data_input)] = data_input
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy=True, beam_width=100, top_paths=1)
if tf.__version__[0:2] == '1.':
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
speech_result = ctc_decode_delete_tail_blank(r1[0])
return speech_result
class SpeechModel25(BaseModel):
"""
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
"""
def __init__(self, input_shape: tuple = (1600, 200, 1), output_size: int = 1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel25'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3, 3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.05)(layer_h1)
layer_h2 = Conv2D(32, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
layer_h3 = Dropout(0.05)(layer_h3) # 随机中断部分神经网络连接,防止过拟合
layer_h4 = Conv2D(64, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.1)(layer_h4)
layer_h5 = Conv2D(64, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.1)(layer_h6)
layer_h7 = Conv2D(128, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.15)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.15)(layer_h9)
layer_h10 = Conv2D(128, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.2)(layer_h10)
layer_h11 = Conv2D(128, (3, 3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
# test=Model(inputs = input_data, outputs = layer_h12)
# test.summary()
layer_h12 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h12) # Reshape层
layer_h12 = Dropout(0.3)(layer_h12) # 随机中断部分神经网络连接,防止过拟合
layer_h13 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h12) # 全连接层
layer_h13 = Dropout(0.3)(layer_h13)
layer_h14 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h13) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h14)
model_base = Model(inputs=input_data, outputs=y_pred)
# model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size,), dtype=np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float64)
for i in range(batch_size):
x_in[i, 0:len(data_input)] = data_input
base_pred = self.model_base.predict(x=x_in)
r = K.ctc_decode(base_pred, in_len, greedy=True, beam_width=100, top_paths=1)
if tf.__version__[0:2] == '1.':
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
speech_result = ctc_decode_delete_tail_blank(r1[0])
return speech_result
class SpeechModel24(BaseModel):
"""
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
"""
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size: int = 1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel24'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.1)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
layer_h3 = Dropout(0.2)(layer_h3) # 随机中断部分神经网络连接,防止过拟合
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.2)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.3)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.3)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
# test=Model(inputs = input_data, outputs = layer_h12)
# test.summary()
layer_h10 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h9) # Reshape层
layer_h10 = Dropout(0.3)(layer_h10) # 随机中断部分神经网络连接,防止过拟合
layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层
layer_h11 = Dropout(0.3)(layer_h11)
layer_h12 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h12)
model_base = Model(inputs=input_data, outputs=y_pred)
# model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size,), dtype=np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float64)
for i in range(batch_size):
x_in[i, 0:len(data_input)] = data_input
base_pred = self.model_base.predict(x=x_in)
r = K.ctc_decode(base_pred, in_len, greedy=True, beam_width=100, top_paths=1)
if tf.__version__[0:2] == '1.':
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
speech_result = ctc_decode_delete_tail_blank(r1[0])
return speech_result